Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
World J Microbiol Biotechnol ; 39(2): 51, 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36544076

RESUMO

The present study aims to evaluate the growth potential of the P. aeruginosa ATCC9027 strain with molasses as the sole carbon source to produce rhamnolipids. The influence of the cultivation time and substrate concentration on biosurfactant production was investigated by using a complete 3-level factorial design, with the rhamnolipid concentration as the variable response. The strain was able to produce the biosurfactant in all design conditions tested, producing 758.04 mg/L rhamnolipids with 7% v/v substrate concentration in a cultivation time of 120 h. The substrate concentration used in the cultivation step directly influenced the biosurfactant production, and, even with the decrease in biomass growth, the biosurfactant production continued to increase. High Performance Liquid Chromatography (HPLC) revealed the presence of 62.3% mono- (RL1) and 37.6% di-rhamnolipids (RL3). The stability tests showed that the biosurfactant has good performance in extreme conditions of temperature, pH and saline concentration. The emulsification index was also evaluated for several oils and hydrocarbons, obtaining emulsification rates of up to 84.9% for the burnt motor oil. In addition, rhamnolipid showed a good ability to remove spilled oil from the sand, removing 58.51% of burnt motor oil and 70.09% of post-frying soybean oil. The results indicate that molasses, an agro-industrial residue abundant in Brazil, can be used as the only carbon source for quality rhamnolipid production when under optimized conditions, therefore presenting itself as a management option for this residue and, at the same time, providing the production product with high added value.


Assuntos
Petróleo , Pseudomonas aeruginosa , Melaço , Óleos , Glicolipídeos/química , Carbono , Tensoativos/química
2.
Front Bioeng Biotechnol ; 10: 794460, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35519607

RESUMO

Environmental contamination caused by inorganic compounds is a major problem affecting soils and surface water. Most remediation techniques are costly and generally lead to incomplete removal and production of secondary waste. Nanotechnology, in this scenario with the zero-valent iron nanoparticle, represents a new generation of environmental remediation technologies. It is non-toxic, abundant, cheap, easy to produce, and its production process is simple. However, in order to decrease the aggregation tendency, the zero-iron nanoparticle is frequently coated with chemical surfactants synthesized from petrochemical sources, which are persistent or partially biodegradable. Biosurfactants (rhamnolipids), extracellular compounds produced by microorganisms from hydrophilic and hydrophobic substrates can replace synthetic surfactants. This study investigated the efficiency of a rhamnolipid biosurfactant on the aggregation of nanoscale zer-valent iron (nZVI) and its efficiency in reducing nitrate in simulated groundwater at pH 4.0. Two methods were tested: 1) adding the rhamnolipid during chemical synthesis and 2) adding the rhamnolipid after chemical synthesis of nZVI. Scanning electron microscopy field emission, X-ray diffractometry, Fourier transform infrared spectroscopy, thermogravimetric analysis, Dynamic Light Scattering, and zeta potential measurements were used to characterize bare nZVI and rhamnolipid-coated nZVI. The effects of the type of nZVI and initial NO3 concentration were examined. Nanoscale zer-valent iron with the addition of the rhamnolipid after synthesis achieved the best removal rate of nitrate (about 78%), with an initial nitrate concentration of 25 mg L-1. The results suggest that nZVI functionalized with rhamnolipids is a promising strategy for the in situ remediations of groundwater contaminated by NO3, heavy metal, and inorganic carbon.

3.
Appl Microbiol Biotechnol ; 105(19): 7505-7515, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34524470

RESUMO

The diseases transmitted by mosquito vectors are a great public health issue. Thus, effective vector control becomes the main strategy to reduce their prevalence. However, insecticide resistance has become a huge concern for the mitigation of mosquitoes; here, we propose the use of rhamnolipids in emulsion with clove oil against Aedes aegypti and Culex quinquefasciatus. The toxicity of rhamnolipids and clove oil to two species of mosquitoes transmitting tropical diseases was investigated. After 24 h, the LC50 was 140 mg/L when rhamnolipids were used and 154 mg/L when clove oil was used against Aedes aegypti larvae. In the case of Culex quinquefasciatus, the LC50 was 130 mg/L for rhamnolipids and 19 mg/L for clove oil. When the concentrations of the upper limits of one of the solutions (rhamnolipid or clove oil) were mixed, 100% mortality was obtained after 24 h. The bioassay of insecticidal action for solutions of rhamnolipids and clove oil in the lower limit, upper limit, and lethal concentration 50 to determine the effect on 50% of the population (KD50) achieved low results from KD50 to the upper limit compared to the other concentrations for both Aedes aegypti and Culex quinquefasciatus. The rhamnolipids and clove oil at the upper limit concentration had the greatest repellent activity against the two mosquito species. Bioassays using different concentrations of rhamnolipids revealed variations in the morphology of the intestinal epithelium (800 mg/L). A concentration of 900 mg/L led to the most severe morphological changes in the organization of the epithelium and the cells lining the intestines of these larvae. When larvae were exposed to a concentration of 1000 mg/L, the marginalization of chromatin in the nucleus of epithelial cells was very severe, indicating the onset of cell death.Key points• The toxicity of rhamnolipids and clove oil has a larvicidal, insecticidal, and repellent effect.• The combination of concentrations of these compounds enhances their action.• Different concentrations of rhamnolipids led to severe morphological changes in the organization of the epithelium and the cells and the intestines of larvae.


Assuntos
Culicidae , Óleos Voláteis , Animais , Morte Celular , Glicolipídeos , Óleos Voláteis/farmacologia
4.
Colloids Surf B Biointerfaces ; 205: 111883, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34102528

RESUMO

Rhamnolipids are glycolipid biosurfactants that have remarkable physicochemical characteristics, such as the capacity for self-assembly, which makes these biomolecules a promising option for application in nanobiotechnology. Rhamnolipids produced from a low-cost carbon source (glycerol) were used to stabilize silver nanoparticles. Silver nanoparticles (AgNPs) have been the subject of studies due to their physical chemical as well as biological properties, which corroborate their catalytic and antimicrobial activity. We compared nanoparticles obtained with three different pH values during synthesis (5, 7 and 9) in the presence of rhamnolipids. Dynamic light scattering showed that larger particles were formed at pH 5 (78-190 nm) compared to pH 7 (6.5-43 nm) and 9 (5.6-28.1 nm). Moreover, nanoparticle stability (analyzed based on the zeta potential) was enhanced with the increase in pH from 5 to 9 (-29.86 ± 1.04, -37.83 ± 0.90 and -40.33 ± 0.57 mV, respectively). Field emission gun scanning electron microscopy confirmed the round morphology of the silver nanoparticles. The LSPR spectra of AgNP for the pHs studied are conserved. In conclusion, different pH values in the presence of rhamnolipids used in the synthesis of silver nanoparticles directly affect nanoparticle size and stability.


Assuntos
Nanopartículas Metálicas , Prata , Microscopia Eletrônica de Varredura
5.
Heliyon ; 3(6): e00337, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28721396

RESUMO

This study focused on two important aspects of the upstream process: the appropriate use of crude glycerol as a low-cost carbon source, and strain selection. The effect of different crude glycerol concentrations on rhamnolipid biosynthesis by two Pseudomonas aeruginosa strains (wild type LBI and mutant LBI 2A1) was studied. Finally, the synthesized rhamnolipids were characterized by mass spectrometry. When both strains were compared, 50 g/L was the most favorable concentration for both, but P. aeruginosa LBI 2A1 showed an increase in rhamnolipid production (2.55 g/L) of 192% over wild type (1.3 g/L). The higher rhamnolipid production could be related to a possible mechanism developed after the mutation process at high antibiotic concentrations. Mass spectrometry confirmed the glycolipid nature of the produced biosurfactant, and the homologue composition showed a wide mixture of mono and di-rhamnolipids. These results show that high glycerol concentrations can inhibit microbial metabolism, due to osmotic stress, leading to a better understanding of glycerol metabolism towards its optimization in fermentation media. Since P. aeruginosa LBI 2A1 showed higher conversion yields than P. aeruginosa LBI, the use of a mutant strain associated with a low cost carbon source might improve biosurfactant biosynthesis, therefore yielding an important upstream improvement.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...